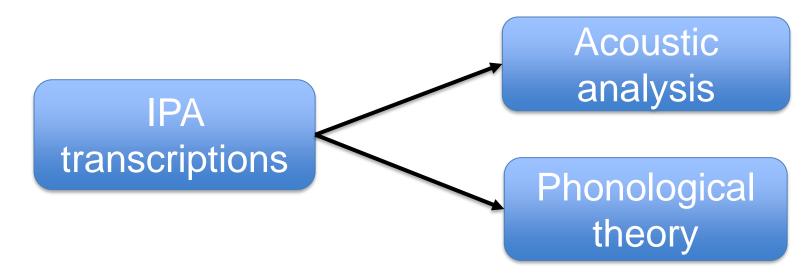

Acoustic evidence for the representation of stress in Southern East Cree Sarah Babinski, Yale University WSCLA 2018, University of Ottawa

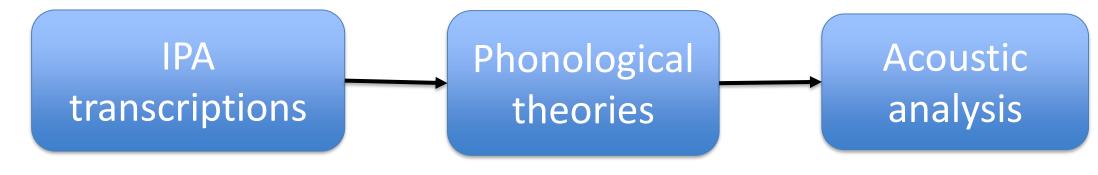
Introduction

Goals of this project:

- Argue for the LH theory of stress in SEC; stress placement is motivated by preference for LH 'uneven' light-heavy (LH) iambs theory
- Propose a method of theoryinformed acoustic analysis to test the accuracy of stress predictions



Language background


- Southern East Cree (SEC) is an Algonquian language spoken in northern Québec
- Its stress system is iambic and quantity-sensitive

Theory-informed acoustic analysis

Work on stress tends to posit theories to explain transcriptions, and to use transcriptions as input to phonetic analysis, but theory and acoustics do not interact:

- But what if our transcriptions are wrong?
- We have no quantitative way to evaluate our transcriptions, or to determine which of a set of competing transcriptions is correct.
- This **method** allows us to adjudicate between competing theories of stress by holding them accountable to acoustic facts.
- Instead of conducting acoustic and theoretical analyses separately, this method uses the predictions made by competing theories (based on a small data set) as input to an acoustic analysis of stress.

Acknowledgements

Many thanks to Jason Shaw, Claire Bowern, Dustin Bowers, Ryan Bennett; the Yale Phonology Reading Group, and the audience at PhoNE 2018, for their helpful comments and feedback.

Competing theories of stress The LH theory (Kager 1999)

- Final stress is the default
- Non-final stress occurs when an **LH iamb**
- Extrametricality is available earlier in the word

The extrametricality theory (Brittain 2000)

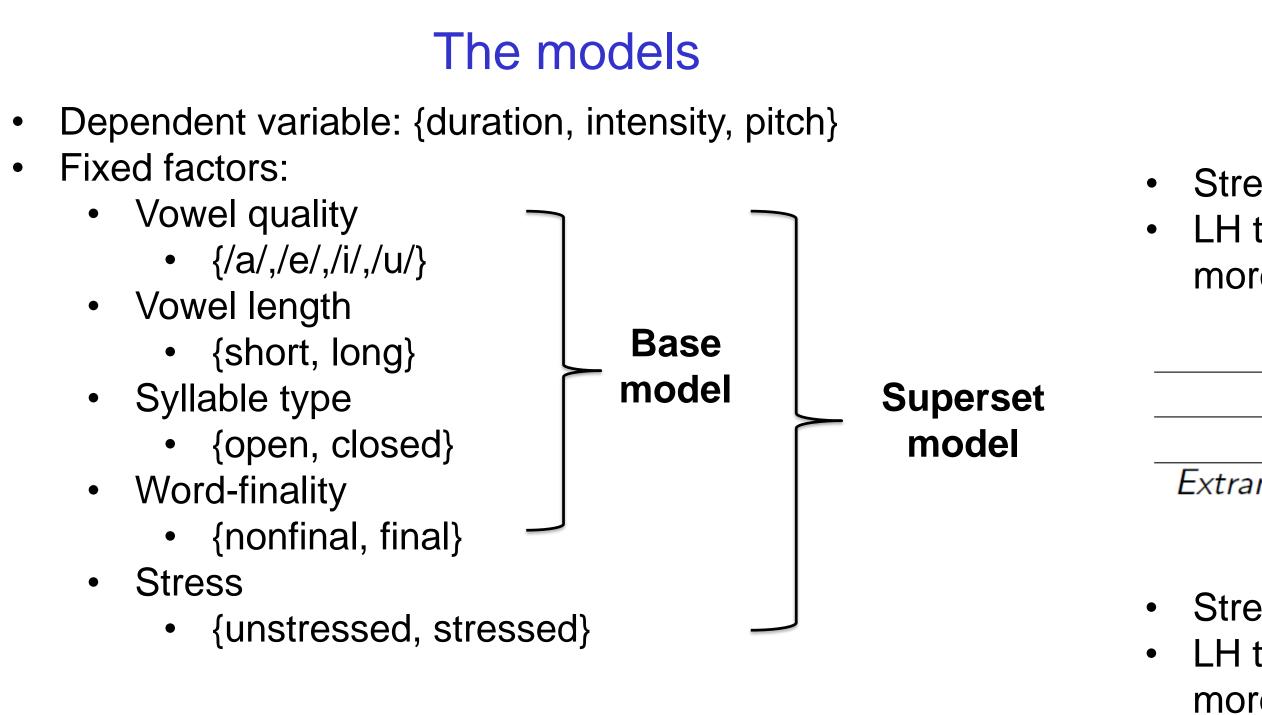
- Non-final stress is the default
- Final stress occurs when the final-foot extrametricality rule is blocked

Comparing their predictions

The theories' predictions overlap on ~75% of the data, and make diverging predictions on the rest.

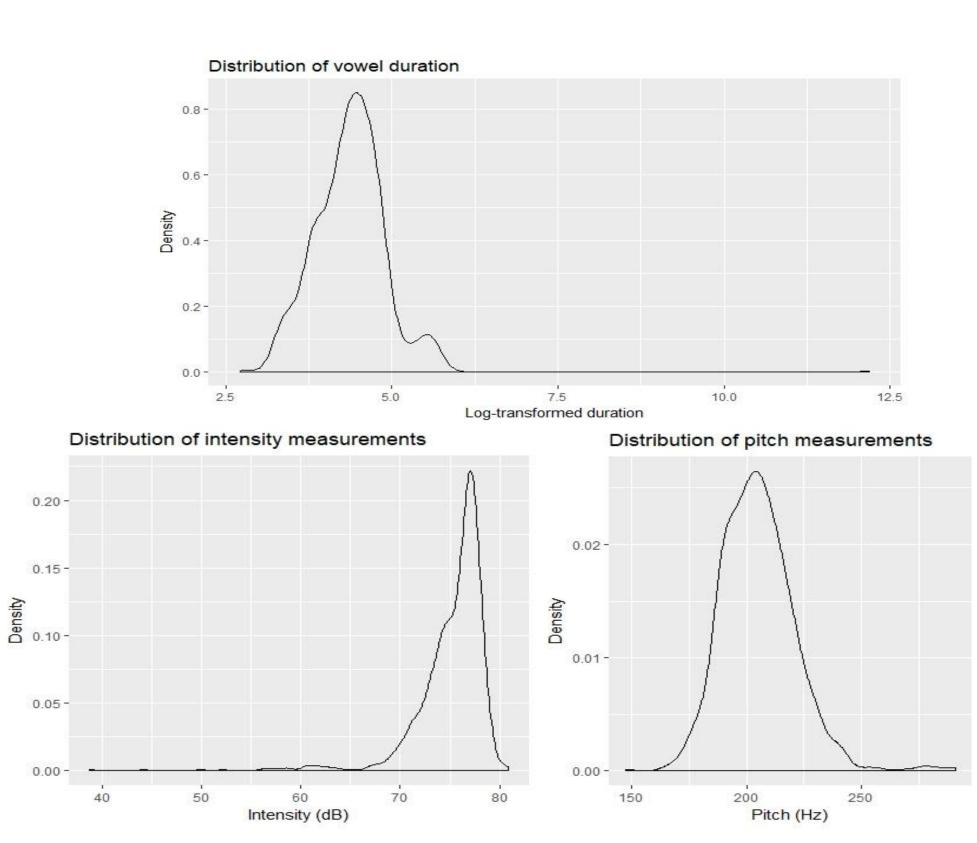
Profile	LH analysis	Extrametricality analysis
LHH	(ni.péː).win	(ni.péː).(win)
HLHH	nir.(mi.nár).nur	nir.(mi.nár).(nur)
LLLH	pa.t∫i.(wi.yáːn)	pa.t∫i.(wi.yáːn)
HLHLH	niː.∫u.t∫iː.(∫i.káːu)	nir.(∫u.t∫ír).⟨∫i.karu⟩
LHLH	ni.taː.(hku.sín)	(ni.táː).
HLLH	teː.hta.(pu.wín)	(téː).hta. <pu.win></pu.win>
LHHH	(ni.yáː).naː.neːu	ni.yaː.(náː).{neːu}

Materials


theory

- Audio files were downloaded from the *Algonquian* Linguistic Atlas (Junker 2005).
- Items (just over 300) were recorded by Candice Diamond of Waskaganish, Québec, who speaks the coastal variety of Southern East Cree.

- Data were segmented in Praat (Boersma & Weenink 2013) and analyzed in R (R Development Team 2015) Segments and measures of duration, maximum intensity, and maximum pitch were extracted
- The following nested linear regression models test how well stress predicts each acoustic correlate of stress



Core data

Stress improves on models of duration, intensity, and pitch significantly

• We expect an accurate theory of stress assignment to roughly mirror these results

Measure	Model	Adj. <i>r</i> ²	AIC	χ^2	<i>p</i> value
Duration	Base	0.44	1015.20		
	Superset	0.47	979.4	7.21	< 0.001***
Intensity	Base	0.44	4123.7		
	Superset	0.45	4109.1	136.36	<0.001***
Pitch	Base	-0.001	6324.8		
	Superset	0.02	6310.4	3910.8	< 0.001***

- Extra

Conclusion

Theory comparison Duration

• Stress improves models of dur. under both theories • LH theory (AIC=1102.8) improved on base model a bit more than extrametricality theory (AIC=1120.0)

Model	Adjusted r^2	AIC	χ^2	p value
Base	0.45	1145.6		
LH	0.48	1102.8	7.8	< 0.001***
metricality	0.47	1120.0	4.8	< 0.001***

Intensity

• Stress improves models of inten. under both theories • LH theory (AIC=4994.0) improved on base model a bit more than extrametricality theory (AIC=5000.6)

Model	Adjusted r^2	AIC	χ^2	<i>p</i> value
Base	0.397	5011.2		
LH	0.408	4994.0	152.6	< 0.001***
Extrametricality	0.404	5000.6	100.1	< 0.001***

Pitch

Stress improves models of pitch under both theories, but effect magnitudes are very different • LH theory (AIC=1102.8) improved on base model a bit more than extrametricality theory (AIC=1120.0)

Model	Adjusted r^2	AIC	χ^2	<i>p</i> value
Base	0.006	7857.9		
LH	0.032	7833.5	6712.0	< 0.001***
ametricality	0.009	7855.2	1227.1	0.03*

• The extrametricality theory predicts *lower* pitch in stressed syllables in the divergent data, cancelling out some of the effect from the core data

Model	eta	t value	<i>p</i> value
LH	7.28	2.38	0.02*
Extrametricality	-7.28	-2.38	0.02*

• The divergence in each theory's results suggest that the LH theory more accurately captures SEC stress than the extrametricality theory does

• The method proposed can be broadly generalized to work on stress

• We can adjudicate between competing theories by holding these accountable for the acoustics of stress